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Chapter 3: Phase Equilibria _
lefine a new function, viz. the original function, U, minus the product of the two

Juantities to be mtcrchanged with due regard for the sign of the term in the ongma]
:quation. That is, we define o

H=U-(-PV)=U+PV @)

vhere H, the enthalpy of the system, is a state function because it is defined in terms of
tate functions. Differentiation of Eq. (2-7) and substitution for 4U in Eq. (2-3) gives'

Similarly, to interchange T and S (but not P and V) in Eq. (2-3), we define the Helm-
holtz energy

A=U-TS (210
giving

dA = ST - Pdy . @1

and

In this case, the independent variables or constramts are T and V. Finally, to inter-
change both T and S and P and V in Eq. (2-3) so as to use T and P as the independent
variables, we define the Gibbs energy

G=U—TS~(-PV)= H-TS 213

giving
G = -SdT +VdP O 14)
and '
dGrp <0 : - (2-15)
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Chapter 3: Phase Equilibria
Table 2-1 Some important thermodynamic relations for a homogeneous closed system.

Definition of H, A, and G
H=U+PV
A=U-T§
G=U+PV-TS=H-TS=A+FPV
Fundamental Equations
dU = Td§ - PdV dA =-54T = PdV
dH = TdS + VdP dG =-8dT + VdP
Extensive Functions as Thermodynamic Potentials
dUs =0 dApy=0
dHgp < 0 dGrps 0
Maxwell Relations Resulting from the Fundamental Equations

5,5, &E-&

av Jg as )y av)y \dTJy
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Identities Resulting from the Fundamental Equations
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Chapter 3: Phase Equilibria

dH = TdS+VdP +y 1;dn, (2-21)

[
dA = =SdT - PdV + 'y pdn; (2-22)

i
dG = ~SdT +VdP + Y pdn; (2-23)

i

From the definition of i; given in Eq. (2-19) and from Egs. (2-20) to (2-23), 1t
follows that

. _{ay] [EHJ [BA] (as} 5
== = | = | = = | = _ (2-24)
on; SV, on, S.P.n; oy T.V.n, oy TPy

Closed System: Single Phase: — Homogeneous

Multi Phase: — Heterogeneous
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Chemical Potential
A closed system consisting of a number of phases in contact, called a heterogeneous closed
system, can be treated as a collection of open systems, where each phase is considered to be a
homaogeneous one, exchanging mass with other open systems.
In an open system the change of Gibbs energy cannot be expressed by Eq.(3.6) as the energy
can vary by components of the system crossing the phase boundary. Hence,

N
4G = =SdT + VdP + 3 (dG/dn )y, dn, (3.13)

where nj is the number of moles of each component, with the subscript nj referring to all mole
numbers except ni, and N is the total number of components in the system.

The derivative of an extensive property relative to the number of moles of any component at
constant pressure, temperature and other mole nambers, is defined as the partial molar property
of that component. The partial molar Gibbs energy is called chemical potential, pj

I, =(JdG / dn )"'-P-"if. (3.14)

It can be shown [ 1], that,

=G ) = @A), = Oy, Z(E)UI?)ni).i\,‘“"l (3.15)
Open System:
dG = —SdT +VdP + X (32) dn;
ani T,P,llj_.'ti

n;. v;“:“)"}?'ﬁgsb‘J}‘J‘M
e L2 N
N: V:..._..»:I;-\Jf.ﬂ.w

Partial Molar Property (g Ve Gl
g 3das 93 g3 Sab o a9 S LSS 3 Lo 3 La J ge 5S4y ol (MR ConS a5 2

)ila el >l sla

4 OO o 1O O 3 O PO P - - )

wi = (5r)

T,P,ni¢j




‘S}l'é )L‘*'é)_gs'efu‘ bé'b" ):'Sé _}Lf 9 S “5“'5":’ WM’ 0 005 ’,‘a_dr O‘i IS "O

O 50 OYlew
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Fugacity
As relations amongst state properties are independent of the process path [2]. Eq.(3.6) for a

reversible process can be used to express the Gibbs energy change, hence, the chemical
potential,

dG = —SdT + VdP (3.21)

For a pure substance partial molar properties are the same as molar properties. Hence, the
change of chemical potential of the pure substance i, is given by,

duingi=—SidT+VidP (3.22)

where g, s and v are the molar Gibbs cnergy, inolar entropy and molar volume respectively.

At constant temperature the above equation reduces to,

(O / OP) = v; (3.23)

which leads to a simple expression for the chemical potential of an ideal gas, with the pressure-
volume relation as, :

Pvi=RT (3.24)
that is,

(ou; /9P); =RT/P (3.25)

where R is the universal gas constant.

i — 1 = RTIn(f;/P;)

if 1= puresubtance = g :g
i

o A A SR e
= == fugacity coef ficient
oL D, 1 1
if i = Componentof Mixture — 5 P

i i
fi

P, =

B o yiP Note : P-0 = 0;-1

JT o) L2 s &5 (6l 15 T 0l Sl 51 ool O5en ¢V 1 el 3 o 3D 2 5
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Chapter 3: Phase Equilibria
Integrating Eq.(3.25) at constant temperature, we obtain,
H, - =RTIn(P/P") (3200

The above cquation provides a simple relation for the change of chemical potential of a pure
ideal gas when its pressure changes from Poto P isothermally.

Lewis [1] generalised Eq.(3.20) for application (o real systems, by defining a "correcied
pressure” function ", called fugacitv (escaping tendency} as follows,

B = RTIE /1) {3.27)

where 1, and i@ are the chemical potential and fugacity of the component i, respectively, al a
reference stale.

For an ideal gas, therefore, the fugacity is equal to its pressure, and the fugacity of each
component is equal (o its partial pressure.,

The ratio of fugacity to pressure is defined as the fugacity coefficient ¢. For a multicomponent
system,

o, =1 /(Pz,) (3.28)

where 7j is the mole fraction of the component i, Since all systems behave as ideal gases at
very low pressures,

;-1 when P--0 (3.20)

‘the departure of fugacity coefficients from unity is, therefore, a measure of non-ideality of the
system.

Writing Eq.(3.27) for the component i, in each phase of a heterogeneous system, with all

reference states al the same temperature, the equality of the chemical potential at equilibrium
given by Eq.(3.20), leads to,

l"l” — f"(?) — f'(‘) = = '-'(“) |=|,2,N (“‘())

Multi Component System

g —— pefas _ R v i=12.:N
ing; =— | l( anf)r,v,n#,. T av — iz
V:Total Volume n=Xn;
Z: Compressibility factor for mixture Z = PV [nRT
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The fugacity coefficient of a pure compound cf;m be determined by incorporating Fiq.{3.32)
into the general expression for the fugacity coefficient, Eq.(3.31),

" v
71 [ YRT
mo=[[ 2= ap=z-1-mz+— [ _plg 3.35
ne i( P ) (£=D-In RT:[(V )” (3.35)

where v is the molar volume. Depending on the form of the equation of state, onc of the above
two expressions for the fugacity can be simpler to use.

Example 3.1,

The compressibility factor of a pure gas at 290 K can be related to its pressure as,
7Z=1-65x10"P-75%10"P’ P<15 MPa
where P is in MPa. Calculate the gas fugacitiy at 10 MPa.

Solution:

Substituting the above expression of Z in Eq{3.35), we obtain,

P Pr_ p_ : ~4py?
1n¢=j(z 1)(”):!( §.5x10 P-75%107%p ]dP
-\ P ! P .

g =[-6.5x10'P-7.5x10 P 12]" = ~0.6875
0
¢=0.5028

f=¢xP=5.028 MPa
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Ex 3-1 Gas (pure component)

z—1—65»1072P 75> 10 %P*

—9
fl@ pP=10 MPa
In® JP(Z_l)dP
ng = — ¢

0 B
Solution

10
- InQ= J —6.5%1072—75%x10"°P = —0.6875
0

- 0 =0.5028

> f=0+P=05028+10 = 5.028 MPa
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Chapter 3: Phase Equilibria

3.2 EQUILIBRIUM RATIO

Let us consider two phases of liquid, L, and vapour, V., at equilibrium. Eq.(3.30) for such a
system s,

[ .
(=1 i=1,2,..N (3.40)

Applying Eq.(3.28) to both phases, we obtain:

i .

' =x,Po! i=1.2,..N (3.41)
£ =y,Po; i=1,2,..N (3.42)
Hence,

K=y /x, =0"/¢’ i=1,2...N (3.43)

where K; is called the equilibrium ratio and is defined as the ratio of mole fraction of
component i in the vapour phase yj, to that in the liquid phase xi. A general and rigorous
approach to determine the fugacity coefficient of a component in both phases from volumetric
information, using an equation of state, is given in Chapter 4.
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Assuming that the viapour is an ideal gas, we obtain,
-V
(i.pure :P (348)

The effect of pressure on fugacity of a condensed phase at low pressure is small [1] and can be
neglected. The fugacity of a pute liquid at low pressure can, therefore, be assumed equal to its
fugacity at the saturation pressure. The fugacities of saturated vapour and liquid are equal, as
the two phases are at equilibrium. Furthermore, the vapour fugacity at fow pressure can be
assumed cqual to its pressure. Hence, the liquid fugacity can be taken equal to the vapour
pressure of the substance at the prevailing temperature,

=P

1
! ' | (3.49)

.pure

where P is the saturation (vapour) pressure of the pure com ound, 1.
1

Substituting Eqs.(3.48) and (3.49) into Eq.(3.47), we obtain,

Pl (3.50)
or

b
Kizi)i /P (351)

Eq.(3.51) is known as Raoult’s law. Considering the above assumptions, it is only valid at
low pressure for simple mixtures.

JU 59 4ol
BP

z=14+— Jed e

RT
.C.,.wl\.a;)"‘s.q\?M(B)ka}d:l&-r);\ﬂﬁi&

B g —1 2B _.BP
ng = -lo (T) dP = .[0 R—TdP — ng = RT

B S
Z=1+V+W e -

B
®(z—1)dV 2B (7)6
In(Z)=z—1—Inz—fV T=7+ 72 —Inz

'Y
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Henry's Law

The proportionality of component fugacity to its concentration, as assumed in Fq.(3.45) is
valid for components at low concentrations in most liquid mixtures,

fi =Hix; (3.52)

where Hj is called Henrv's constant, which is experimentally determined.

The concentration of component, i, is generally expected to be less than 3 mole % for the above
equation to be valid [1]. 1t is, therefore, a useful equation to determine the solubility of
hydrocarbons in water where the solubility is generally low.

At low pressure, where the assumption of ideal gas is valid, Eq.(3.48) can be used to describe
fugacities in the gas phase,

Py; = Hix; 4 {1.53)
which is known as Henry's law. Hence,

K; = HyP (3.54)

LY

H,

1

i.pure

0

Composition, x; !

Figure 3.1. Comparison of Henry's law with Lewis rule.
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Figure 3.2 Henry's constants for solubility of hydrocarbons in water. Reprinted with permission
{61, Copyright (1953) American Chemical Socicty.



‘S}lé )L‘é)_GQJ'" bé'b'! )-:SQ _).lf 9 Cﬁé.; ¢SO W Gwd]e 0 00 5|~>—G|' °|§ ES »|‘>

Oy Yl
Chapter 3: Phase Equilibria
i Krichevsky-Kasarnovsky Equation: S b g on b ,::..,!3'
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The dependency of Henry's constant on pressure can be determined rigorously by
thermodynamic relations as,

H; = H? exp{v:°(P - P°)/RT] (3.55)

where H;® is Henry's constant at P°, and v is the partial molar volume of component i in the
solvent at infinite dilution, assumed constant over the prevailing pressure and composition
ranges. Eq.(3.55) is known as the Krichevsky-Kasarnovsky equation {5].

Limited information on v;” of compounds in water are available in the literature [6]. The partial
molar volume varies with temperature, and becomes pressure dependent near the critical point.

An average value of 35, 40, 55, and 80 cm3/gmol, can be used for nitrogen, methane, cthane,
and propane respectively.

Example 3.3.

Estimate the solubility of methane in water at 373 K, and 65 MPa using Henry's faw.
Compare the result with the value shown in Figure 2.28.

Solution:

The Henry’s constant for methane at 65 MPa is calculated from Eq.(3.55):
At T=373 K, H"=6.5%10* MPa/mel fraction {Figure 3.2), and P'=(.10 MPa,
He=(6.5%10" MPa/mol fraction) exp[(40x10 'm"kgmolx{65.00-0.10)MPy/
(0.0083144x373 MPa.m"kgmol)} =1.4378x10° MPa/mol fraction.

The solubility of methane is calculated using Eq.(3.52),

v v

for =Pyadar = Haxe

The gas can be assumed as pure methane due to low volatility of water relative to
methane: y,=1. The fugacity coefficient of methane vapour at the prevailing conditions
can be calculated by an equation of state as applied in Example 4.1. Assuming tbﬁ,:l,

we obtain,
f~=P=65 MPa= (1.4378x10' MPa/mol fraction) X x,

Xe=4.52%107° mole fraction of methane in waler.

The solubility value is read from Figure 2.28 equal to 4.3x10",



‘S}lé )w)_‘fw‘ d'bj )-:SO _}lf 9 CAJ:-; 6‘5‘).3.& ‘sw'a]e 00 ‘s s ;|‘>_C}|. ols’ Iy »|‘>

Oy GYbw
Chapter 3: Phase Equilibria

L
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-  xc1 =4.52+107% mole fraction of C1 in water
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65 MPa = 9426 Psi 1
. 4V,
/
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From figure solubility is equal to . (MY
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K=(T+459.67¥1.8 MPa=0.006895 xpsia
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Figure 3.3. Equilibrium ratios of a hydrocarbon mixture at 322 K (120°F). SPE-AIME
Copyright. Reproduced from [7] with permission.

Standing [12], represented the graphical correlation of Mathews, Roland, and Katz [13] as,

T

g

©, =338+202xlogM, —71.2)+(1361xlogM —2111)logS,_ (3.57)

Poc, =B.191-297xlogM —6L1)+(Sc, —0.8)[15.99 - 5.87 x log(My - 53.?}]H 58)

where T., and P; are in K and MPa, respectively.

Other correlations to estimate the critical properties of the Cq, fraction are also available
[14,15].
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2,8 oo se Weighted average gl ; ool

IUT-JR VAP B @.&j(\ﬁq)ﬁk}.‘t&)u QY:\&?Q&,:,‘ Sllone

Matthews/Roland/Katz - CT" pessisly — o) S lis Sllows 5

T =338+202=+log(M; , —71.2) T:2K

Ccr+

+(1361xlogM,  —2111)logS, P:MPa

P, =8191—297 x Log(M, ., —61.1)
+ (S, — 0.8)[15.99 — 587 x Log(M , —53.7)]

L4 n

Sutton & Whitson
dstea 51 (Th ) 2o s 5 SG AL MeCain 15" 55 C7" 4 b g o Sllons Ko 5

T R
~ P, = exp[8.3634 — el ekl ol ) 8 Lee-Kesler

'yc7+

22898 0.11857 25
— | 0.24244 + + 10 °Tg

2
Y7+ yc7+

3648 047227\ _
Lee-Kesler — +114685+ yc7+ + yC7+2 10 Ty,

/46 (R
—7 |107°T5’]

Y
Tpe = 3417 + 811y,7+ + (0.4244+0.1174y++) Ty

—

= (0.42019+

N (0.4669—3.2623y,++)10°
TB

Whitson — Ty = [45579M,,+015178), , 01542773 -
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F
Standing:

Note 1:

T, =338+202xlog(M;,, — 71.2)

c7

+(1361x logM,, —2111)log S

Note 2:

P, =8191-297 x Log(M, , —611)

+(Sg,, — 08)[15.99 — 587 x Log(M, —53.7)]

T. = 64235 K (6965 °F)
— Pseudo Heavy Component is slightly
F. = 2173 MPa (3152 psig)

Y
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s Il - K = f(T, P,Comoposition)

Standing
e ki e KUK w1y 08 &) Hoffmann c¥ole L 1, K s8R l)T ol
P
gl os(7
ogkP) =+ 1w (-~ 7) s o
Tb c
n'=—-096+ 653X 102X P +3.16 X 1074 x P? Table 3 — 1
B’ =0890—2.46X1072xP—736x10"*x P? P,= 01 MPa

Standing [16] correlated the experimental K-values of Oklahoma City crude oil/natural gas
samples generated by Katz and Hachmuth [171], using Eq.(3.59) proposed by Hoffmann et al.
[18].

log KP=n'+ P [ (Limy, - U] (3.59)
M =-0.96+6.53x107P + 3.16x107°P? (3.60)
B =0.890 - 2.46x107°P - 7.36x107*P? (3.61)

where P is pressure in MPa, and Ty, (normal boiling point} and T are in K. o is the slope of
the straight line connecting the critical point and the boiling point at atmospheric pressure, P,

on a log vapour pressure vs. (T)"! plot.

o =[log(P./P)] /11T, - 1/T.] (3.62)

The values of o’ and T, for C4. fractions can be obtained from:

o' = 563+ 180n - 2.364n2 (3.63)
Tpy = 167433.25n -0.539n2 (3.64)

where n is the number of carbons of the normal paraffin that has the same K-value as that of
the Cqy fraction. It can be estimated by comparing the molecular weight of the Cq. [raction

with those of normal paraffins, Table A.1 in Appendix A. Standing correlated n for the
Oklahoma City crude oil samples by,

n= 385+ 0.0135T + 0.2321P {3.65)
where T is in K and P is in MPa.
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Chapter 3: Phase Equilibria

Tahle 3.1.
Values of " and T}, for use in Standing's equilibrium ratio correlation.

Cormnpound a', K Th K
Nitrogen 261 61
Carbon Dioxide 362 108
Hydrogen Sulphide 631 184
Methane 167 52
Ethane 636 168
Propane 499 231
iso-Butane 1132 262
n-Butane 1196 273
iso-Pentane 1316 301
n-Pentane 1378 E1i)
iso-Hexanes 1498 335
n-Hexane 1544 342
Hexanes (lumped) 1521 339
n-Heptane 1704 372
n-Olctane 1853 390
n-Monane 1994 424
n-Decane 2127 447
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Chapter 3: Phase Equilibria
Wilson [20] proposed the following equation to estimate the equilibrium ratio below 3.5 MPa

(500 psia):
K, = (P, /P)exp[5.37(1+w, )(1-T,/T)] (3.66)
where w is the acentric factor and T, and P are the absolute critical temperature and pressure

respectively. The Wilson equation basically uses Raoult's law, with the vapour pressure
related to the critical properties using the definition of the acentric factor, Eq.(1.9).

Wilson ( @ low pressures )

P < 3.5 MPa ( 500 psia)

Er T
K; =fexp [5.37(1 + w;) (1 —?Cl)]

Wilson used Raoult's law

=S )

Fe

— 1.0
T,=0.7

The Wilson equation generally provides reliable estimation of K-values for sub-critical
components, but overestimates those of the supercritical components [24]. The equation has

been extended to higher pressures [22] as,

K, =(P,/B)" (P, /Plexp[5.37A(1 + @, )(1 - T,/ T)] (3.67)

where
A=1-[(P-r)/(P, P

and Py is the convergence pressure, as correlated by Standing [12],

P, =0.414M_ —29.0 (3.68)

where Py is in MPa. The exponent n varies between 0.5 and 0.8, depending on the fluid, with

a default value of 0.6,

" Modified Wilson

P 5

K, — (E)A_l(})—“') exp[5.374 (1+ w)) (1 —T—”)]

]n 05<n<08

default: n=0.6

P, =0414 Mw,, — 29 (Convergence Pressure) (Standing)
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The convergence pressure for the modified Wilson equation 1s caleulated from Eg.(3.68),
equal 10 57.94 MPa, with the value of A=0.044,

The calculated equilibrivum ratios using the Standing method, K, the Wilson equation, K,
and the modified Wilson equation, K ... are compared with the experimental valoes, K., in
the following table.

Componant o' K T K K, Ky Kow K,
Equation o BEEE 366 367
T, 167 52 34601 4.1626 46099 30022

C, 636 168 11454 0.6666 1.4170 1.0274
C, 990 231 05490 00731 0.5947 04749
ic, 1132 262 03245 00693 03298 0.2855
nC, 1196 273 02727 00490 02660  0.2268
iC, 1316 301 00686 00207 0I517  0.1353
nC, 1378 300 0.0478 00162 01292 01091
C, 1521 330 00874 00057 00661  0.0539
C.. 2214 460 00088 00000 00005  0.0086

Note that although the pressure is above the working range of the Standing correlation, it
predicts the results more reliably than others. The modification has improved the Wilson
equation in general, except for predicting the equilibrium ratio of methane.

Example 3.5,

Estimate equilibrium ratios of the gas-oil system described in Example 3.4, using the
Standing method and the Wilson equation. Compare the results with the experimental
values,

Solution:

The critical properties of C-C; are read from Table A.l in Appendix A. The properties
of C,, are calculated as follows.

Standing Correlation

Substituting the pressure and temperature in Eq.(3.65), the equivalent carbon number of
C., is determined equal to 10.66, which results in «'=2213 K and T,=460.2 K, using
Eq.(3.63) and Eq.(3.64), respectively.

The coefficients of Eq.(3.59) at 10,45 MPa are calculated as,

n'= 0L.067463, using Eq.(3.60)

B =10.5526, using Eq.(3.62)

The results are given in the following table.

Wilson Equation

The estimation of critical properties of a pseudo component, using its specific gravity and
molecular weight, is described in Section 6.2, A simple approach is to represent O, with a

normal alkane with the same molecular weight. In this case, C;, with a molecular weight
of 212 is considered to represent C,,. The critical properties of , are, therefore,

estimated equal to T =708 K, P.=1.480 MPa, and w=0.6863.

Yo



‘S}Lé )Lz'é)_‘s'efu‘ ok ):'go _)'L? 9 RS c‘s.o.z.& ‘smo.,.e’ 0 005 ’,‘a_dr olEisle

Oy GYbw
Chapter 3: Phase Equilibria
Ex 3-5: Estimate K for Ex 3-4 - + Standing Method
{P = 10.45 MPa - Wilson Equation
Solution L s

2537 s & 5 ) B L 4 b a sl g S, K 0l e 1K
10 MPa s, YL i Ex 3-4 -

Standing —  Intermediate Pressures : P<7MPa (1000psia)

log(KE) — '+ Bl (==
og =1 +B'la T, )]
n' =-096+653x10 2xP +3.16x 10+ x P?

B'=0890—-246x102xP—-736x10"*x P?
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