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Chapter 4. Equations of States

Multi Component System

1 (o [(dP RT _
e it — — i=12,..,N
t; RT fV [(a"i)T,v,n,-*j 14 At
V:Total Volume n=xn
Z:Compressibility factor for mixture Z = PV /nRT

4.1 VIRIAL EOS AND ITS MODIFICATIONS

The virial equation is based on theories of statistical mechanics [2], and can be expressed as
an infinite series of either molar volume (molar density), or pressure,

Z=1+B/v+C/vi+D/v + ... (4.1)
(Z=1+Bp,, +Cpj, +Dpy +.....)

or,

Z=1+B’P+C'PZ+D'P3+.... (4.2)
where Z is the compressibility factor, v and p are the molar volume and the molar density,

respectively, and P is the pressure. B, C, D, etc., are called the second, third, fourth, and so
on, virial coefficients, and depend only on temperature for each compound.

Virial EoS:

_PV _ 4 D2 3
Z—ﬁ—l+BP+CP +D'P° +... V=V(P, T)
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4.2 CUBIC EQUATIONS OF STATE

van der Waals improved the ideal gas equation by considering the intermolecular attractive
and repulsive forces, and introduced his well-known equation of state in 1873,

(P+5)(v—b)=RT (4.4)

where &fv? and b represent the attractive and repulsive terms respectively, and v is the
molar volume.

As the pressure approaches infinity, the molar volume becomes equal to b. Hence, b is also
considered as an apparent volume of the molecules and called co-volume. It should be

always less than the molar volume v.

The above equation in terms of volume or compressibility factor takes a cubic form as

follows:

RT a ab
vi—(b+—)V +(=v—"—=0 4.5
( P ) { P} P 4.5)
or
Z'—(1+B)Z*+ AZ-AB=0 (4.6)
where the dimensionless parameters A and B are defined as,
abP
A= 4.7
(RT) {
bP
B= 25 4.8)
RT (
T2
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Figure 4.1. Volumetric behaviour of pure compound as predicted by cubic EOS of van der

Waals type.
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Example 4.1.

In Example 3.3, the solubility of methane in water was calculated by assuming the methane
fogacity coefficient equal to one. Use vdW to estimate the fugacity coefficient and improve
the accuracy of predicted gas solubility.

Solution:

Substituting the pressure in the fugacity expression for pure compounds, Eq.(3.35), using
vdW, we obtain,

Ing=(Z-1)-InZ+ —
[RT

1

— —Plav=
el P
1 [(RT_R

=(Z-1)=-InZ+

IS
RTi %)dv

Imegration of the above equation results in,

1 al
Intd=(Z-1})=InZ+—| RTI -
¢=( )=In RT[ “v b v]

Implementing the limits, and making the equation dimensionless, using Eqs.(4.7-8), we
obtain:

Ing=(Z-1)-In(Z-B)-A/Z

The parameters of vdW are calculated, using Eqs.(4.9-10) and methane critical properties
given in Table A.1 in Appendix A, as,

2
z[R LY J-[Z?.fﬁ-l}x{ﬁ 0083144x190.56)/4.599=0.230274 MPa (m fkgmol)’
5
b= é RP;I' Ykgmol

with the dimensionless values, defined in Eq.{4.7-8), as follows,

A=1.556251 B=0.902574
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Substituting the above values in Eq.{4.6), resulis in the following cubic equation for Z,
Z'-1.90257 Z'+1.55625 Z-1.40463=0

with only one real root,

£=1.49069

Substituting the above value of the compressibility factor in the fugacity expression resulis in,

¢=0.97773

Hence the concentration of dissolved methane in water, corrected for the fugacity coefficient,
is,

£ =Px=65 x0.97779 MPa = (1.4378x10' MPa/mol fraction) x x,

xe =4 42x 107 mole fraction of methane in water.

Two Parameter EOS

Redlich-Kwong (RK) EOS

(e sl sl

RT?
a=0,—<% 0,=04274
pc
RT,
b=Q, p° 0, = 0.08664

4.2.1 Two-Parameter EOS

Redlich and Kwong [10] modified the attractive term of vdW as,
P=RT/v-b)—a/T" v(v+b)] (4.21)

The values of £2, and €2, were considered to be constant, hence, determined to be 0.42747
and 0.08664 respectively, using Eq.(4.9).
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Exgmple 4.3,

A class of equations relating volumetric properties to temperature and pressure, is that based
on the corresponding states principle, which considers that fluids behave identically at
conditions of T‘ reduced properties. Reduce the Redlich-Kwong EOS to a corresponding
states form of Z=Z(Ty, Pr). Compare the result for T=1.5, over a Py range of 0.5-3, with that
of the generalised compressibility chant shown in Figure 2.22.

Sefution:

The Redlich-Kwong EOS in terms of the compressibility factor is the same as Eg.(4.26), with
the following expressions for A and B according to Eqs.(4.7) and {4.8), respectively,

A =aP/RT)* =(0.4274TT°R*T. /P,)P/R*T? = 0.42747T P,

B =bP/RT = (0.08664RT. /P,)P/RT = 0.08664T P,

Substituting the above two expressions in Eq.(4.24), results in,

Z' - Z* +[(0.42747P, / T7* - 0.08664P, /T, - (0.08664P, /T, )* |Z - 0.037036P} / T} =0

Substituting T,=1.5 and various P, values in the above equation results in a cubic equations, with
the results as follows. The comparison with the values of Z read from Figure 2.22 15 also shown.

P, 0.5 L0 2.0 3.0
7 RK 0952 0907  0.534  0.79%
7 Fig.2.22 0950 0903 0.823  0.J7%

ee
..LA."“...;Q;))bﬁ\)c;bﬁ‘fbd.ﬂi‘ﬁc_b-)ugul;w# ﬁ&:Jkﬁl‘._; SRK

SRK pgus b 30 clo> p $
¥ aP . bP , PV
~ (RT)? =0T SR
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Soave-Redlich-Kwong EOS (SRK)

Soave [21] replaced the temperature dependency of the attractive term in RK, T3, by a
more general function o

P=RT/(v-b)-asal[v(v+b)] (4.22)
where

a, = 0.42747 R’-T,;2 /P,

b=0.08664 R T,/ P,

and

a=[1+m(l-T23%)? (4.23)

The function o was selected, and m was correlated with the acentric factor by equating
fugacities of saturated liquid and vapour phases at T, =0.7,

m=0.480+1.574w-0.1 7602 (4.24)

Soave et al. [22], later suggested to divide the value of m determined from the above
equation by 1.18 to improve the results.

L -
Peng-Robinson (PR)

..L';J-( h.""‘""-')":"i"-"‘k"-' SRK\{A—_L’&A);GD il ‘-.lj:&_b-_h"élg :ﬁe)fh;“i

Q, =04572 Q, = 0077796 m = 03746 +1.542w— 0.2699w?
m ducloee
2 Mdal, 0L Cge 390 0 sl s 4 ) joms aZ U Jlayi fgee dlals 3a b 31 &5 \oa (L35 05

X ..L'z; oslid W e
Heavier Components (w; > 0.49):

m = 03796 + 1435w — 0.1644w* + 0.01667w®
PR\-‘,—- B e Py
z*°—~(1-B)z*+(4-2B-3B9)z-(4B-B*-B¥ =0
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Peng-Robinson EOS (PR)

Peng and Robinson [24] modified the attractive term mainly to improve the prediction of
liquid density in comparison with SRE,

P =RT/v - b) - agof{v(v + b) + b(v - b]] (4.27)
where,

a,=0457235R2T 2/ P,

and

b=0077796 R T /P,

They used a similar form of « as proposed by Soave, Eq.(4.23), but used vapour-pressure
data from the normal boiling point to the critical point, and correlated m as,

m =0.37464 + 1.54220w - 0.26992a2 (4.28)
The correlation was later modified to improve predictions for heavier components [25],

m =0.3796 + 1.485w - 0.1644c* + 0.01667a* {4.29)

PR in terms of the compressibility factor Z takes the following form,
Z3-(1-B)Z2 + (A -2B -3B2) Z - (AB-B2-BH) =0 (4.30)

PR is obtained by substituting u and w in Eq.(4.12) by 2b and b, respectively.

Volume Shift
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Peneloux et al. [26] were the first who introduced the volume shift concept, i.e. shifting the
volume axis, and applied it to SRK,

Veor= y - ¢ (4.31)

where veor is the corrected molar volume, and c is the correction term determined by
matching the measured and predicted saturated liquid volumes at T, = 0.7.

EOS are applied to multicomponent mixtures by introducing mixing rules to determine
mixture parameters, as will be described in Section 4.5. The following mixing rule is used
to determine ¢ for mixtures:

N
=3 xc, (4.32)
where, X;, is the mole fraction of component, i, in the mixture.

Peneloux et al. correlated the volume translation parameter ¢ as,

RT.

© = 0.40768(0.29441- Zy, ) —
[

(4.34)

Jhaveri and Youngren [27], similarly to Peneloux et al., applied the volume shift concept to
PR, and related ¢ to the parameter b, by defining a dimensionless shift parameter, S;,

Sg=c/b (4.35)

Sg was determined by matching the predicted and measured molar volumes for various
hydrocarbons. The shift parameters for light compounds are given in Table 4.1.

Table 4.1. )
Values of shift parameter in Peng-Robinson equation of state.
component Cy Ca C3 iCq nCyq iCs nCs Cs

Sg -0.1540  -0.1002  -0.08501  -0.07935  -0.06413  -0.04350 -0.04183 -0.01478
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The authors correlated the shift parameter to the molecular weight as,
Sp=l-y/M (4.36)

where y and ¥ are positive coefficients. Suggested values for the coefficients are given in
Table 4.2.

Table 4.2. _
Coefficients of shift parameter correlation, Eq.(4.36).
Component Type W b
Paraffins 2.258 0.1823
Naphthenes 3.004 0.2324
Aromatics 2.516 0.2008
Example 4.4.

Calculate the vapour pressure of normal hexane at 477.6 K using PR. What are the predicted
values of the saturated vapour, and liquid density?

Solution:

At the saturation point, the fugacities of hexane as vapour and liquid should be equal. Hence,
a pressure is assumed and the fugacities are calculated, using PR. The pressure is iterated
until the two calculated fugacities become equal.

Substituting u=2b and w=b in the generalised fugacity expression for pure compounds,
Eq.(4.18), results in,

o A, Z+(1-2)B
Ing=(Z-1)-In(Z B)+23J§lnz+(1+\{2_)B

The parameters of PR are calculated, using Eq.(4.27), and normal hexane critical properties,
Table A.1 in Appendix A, as,

a, = 0‘45?235R2T621'Pc =0.457235x(0.0083144x507.6)"/3.025=2.692273 MPa.(m'/kgmol)’

b =0.077796 RT/P. = 0.077796x 0.0083144x507.6/3.025=0.108539 m’/kgmol
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The temperature dependency factor of the attractive term, 0., is calculated from Eq.(4.29), and
Eq.(4.23), for 0©=0.3013 at T=477.6/507.6=0.94089,

m =0.3796 + 1.4850 - 0.164402 + 0.01667w3= 0.812562
a={1+m( - T,05))2=1.049349
Hence,

a=oxa= 2.825135 MPa.(m’/kgmol)’

Assuming a saturation pressure of 1.86 MPa, using Figure 1.3 or Eq.(1.10), the two
dimensionless parameters, defined by Eqs.(4.7-8), are calculated as,

A=0.33324353 B=0.0508396
which results in the following cubic equation for Z, Eq.(4.6),
Z°-0.9491604 Z°+0.22381034 Z- 0.0142259=0

The above equation has three real roots, Appendix B,

Z,=0.62954

7,=0.10557
7,=0.21405

Substituting the above two values of the compressibility factor in the fugacity expression
results in,

&=4"=0.729704
0=¢"=0.746610

For a pure compound the equality of fugacity reduces to the equality of fugacity coefficient.
The comparison of the calculated fugacity coefficients indicates that the assumed pressure is
close to the saturation pressure, but requires improvement, The next pressure may be
estimated as,

P(u-n = [P(¢L f¢v )](rJ

where r is the iteration number.
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The above approach results in a pressure equal to 1.9031 MPa, for the next step. The

iteration converges to,

P'=1.9458 MPa
$“=6"=0.71716

The estimated value by the Lee-Kesler equation, Eq.(1.10), is 1.936 MPa.
The cubic equation at the above pressure is as follows,

Z7-0.9468152 Z*+0.23376031 Z- 0.015562=0

with the following roots:

Z,=0.60089

Z,=0.10958

Z,=0.23634

Rejecting the intermediate root, and calculating the molar volume, Eq.(1.5), we obtain,
v=ZRT/P v"=0.22362 m’/kgmol v¥=1.22623 m’/kgmol
The volume shift for normal hexane is calculated, Eq.(4.35), as,
c=8;b=-0.01478 x0.108539=-0.001604 m*/kgmol

which results in the following corrected molar volumes, Eq.(4.31),

vry-c Vb'=0.22523 m¥/kgmol vV 21,2279 m¥kgmol

The densities of the saturated phases are:
p=M/v pt=382.6 kg/m’ p'=70.18 kg/m’

The measured values, Figure 1.5, are p"=423, and p¥=72 kg/m’. The modified Rackett
equation, Eq.(1.12), predicts a saturated liquid density of 424.3 kg/m’.

vdW: u=0 w=0
SRK:u=b w=0
PR: u=2b w=b

Y iz s o Cdoles (gl poges S5 K
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RT a
P_'«n-'—b-1.r7'+u1|.-'—1«ll.'2 4.12)

In a two-parameter form of the equation u and w are related to b whereas in a
three-parameter form u, and w are related to b, and/or a third parameter ¢. In a four-
parameter modification u and w are related to b and/or ¢ and a fourth parameter d.

The above general equation in terms of the compressibility factor is,

Z'—(1+B-U)Z* +(A-BU-U-W*)Z - (AB-BW’ -W¥)=0 (4.13)

where the dimensionless parameters A and B are the same as those defined in Egs.(4.7) and
(4.8), respectively, and

Us— 4.14
RT ( )|
wP

W=— 4.15
RT ¢ )

The two-parameter EOS are the most popular equations, where the parameters are expressed
by,

a=80, R:‘
. (4.16)
RT.
b=0
v P, (4.17)

Note that the expressions for the parameters in the modified equations are similar to those of
the original vdW, but the coefficients have been generalised as £1; and £2}, The other
parameters, in EOS which use more than two, are generally of co-volume nature, hence,
expressed by an equation similar to Eq.(4.17), but with different coefficients.

The substitution of Eq.(4.12) into the expression for fugacity of a pure substance, Eq.(3.35),
results in the following generalised expression, using the same approach as in Example 4.1,

T 2
In® = (Z —1) = In(Z — B) + — b [n 22 P U =V U HAW
JUR+4W?  2Z+ U+ U +4W?

(4.18)
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4.3 Mixing Rules
4.3.1. Random Mixing Rules
B= szixiBU‘ (4.68)

where Bjj is the coefficient due to interaction between molecules i and j.
Employing Eq.(4.1), the second coefficient is determined as,

B =1im(dZ/dp)

p=—0

Using a van der Waals type equation to describe Z at low pressures, the above equation
results in,

B =1im(dZ/dp) =b-(a/RT) (4.69)

p—0

Hence, the mixing rules for a and b, at least at low pressures, should be compatible with
that in Eq.(4.68), 1.e., it shouild be of quadratic form.

a= Zinxj(ai ‘aj)o.s 4.73)
i

b= Y xxby =3 3 xx,(bi+b,)/2=Fxb, (4.74)
i i i

A mixing rule similar to that of b is also used for other parameters in EOS that contain more
than two parameters, when the additional parameters are of the co-volume characteristic,

c= Y xc (4.75)



‘S}lﬁ )w)_‘s'efu‘ w17} ):'go _}U 9 RS c‘s.o.z.& ‘sﬁwdg.e’ 0 005 ’,‘a_Or olEisle

Chapter 4: Equations of States
Chapter 5: Phase Behavior Calculations

The attractive force between molecules i and j, represented in EOS by parameter, aj;, which
is of an energy nature, can be expressed in a simple geometric average form [43] as,

a; =(aa)'"? (4.70)

The repulsive force between molecules i and j, represented in EOS by parameter byj, which
has the characteristic of volume, can be determined by arithmetic average,

bjj = (bj +b;)/2 (4.71)

Eqs.(4.70) and (4.71) describing the interaction between a pair of different molecules are
more intuitive than rigorous. Other forms, perhaps with equally valid arguments, can also be
considered. For example, considering the distance between the two molecules, instead of
averaging their volumes results in,

13 13y}
b=[bi ;'bj J 4.72)

It is common to incorporate an additional parameter in Eq.(4.71) to express the attractive
term between pairs of non-similar molecules,

172
ay = (aa;) " (1-ky) (4.77)
where k;; is known as the binary interaction parameter.

Using the above description, the random mixing rule of the attractive term becomes,
0.5
a=Y Y xx(a-a) (1-k,) (4.78)
i

The use of binary interaction parameter for the repulsive term, particularly in mixtures with
high concentration of CO2 [44], has also been suggested, but has not gained popularity,
bij = [(bi +bj)/2](1-K’j)) (4.79)

where k’jj are the repulsive BIP,



‘Sjlé )L:'é)_‘s'efu‘ &" }""gé _)'L? 9 &5.3 ‘(5&5'& ‘SM}M’ 0 o.)s - ;'a_Ol' °|§ & 0‘°

Chapter 4: Equations of States
Chapter 5: Phase Behavior Calculations

Correlations to estimate BIP for specific EOS, such as SRK[45] and PR[46], as well as
general ones [47,48, 49] have been suggested. The most commonly used correlation [47] is,

(vusvirz)”z .
k=9 1-] 22/ (4.80)

if i 1/3 1/3
& g

where the constants ¥;, and 0, are determined for each EOS using the available binary data,
or adjusted in tuning of EOS for a particular fluid system, as will be described in Section 9.3.
A default value of 8=6 may be used [50].

Example 4.5.

The Soave-Redlich-Kwong, and the Peng-Robinson EOS are the most widely used equations
in the petroleum industry. It is common to express these equations by the following general
form,
_ RT a
v—b (v+§b)v+d,b)

where, 81, and, 32, are constants equal to 1 and O in SRK, and 1+ N2, and 1-+/2 in PR,
respectively.

Prove that the fugacity of each component in a mixture, using the above EOS and the random
mixing rules is given by,

Ind, =%L(z—1)—1n(z—B)—L[[22x ag]fa b, rb]l E28,

B3, - 8,) Z+5B
(E4.5)
Solution:
The fugacity coefficient is calculated from Eq.(3.31),
Ing, = _|" 9P —RT/V|dV-InZ (3.31)
RT-V B‘n, e

where V is the total volume. Hence, the equation of state is written in terms of total volume
by substituting v=V/n, where n is the total number of moles,

N
n=Yn,
1
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Figure 4.1. Volumetric behaviour of pure compound as predicted by cubic EOS of van der
Waals type.
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r -

Peng-Robinson (PR)

e U e SRK\i‘..iLa.);c.\.. s o Pk DAt g gl w

Q, =04572 Q, = 007779 m = 03746 +1.542w— 0.2699w?

2 Mdal, 0L g o 0 sl s 4 o e U Jlayi 2 gee dlall 3a b 31 &5 Mo L35 0sls
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Heavier Components (w; > 0.49): '

m =03796+ 1435w — 0.1644w* + 0.01667 w®
PR s i
z*°—-(1-B)z*+(4-2B-3B9)z-(4B-B*-B¥ =0

V4
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Pure component fugacity coefficient

vdW: u=0 w=0
SRK:u=b w=0
PR: u=2b w=b

RT a

v—h vi+uv—w

'P-

- (4.12)

In a two-parameter form of the equation u and w are related to b whereas in a
three-parameter form w, and w are related to b, andfor a third parameter ¢. In a four-
parameter modification u and w are related to b and/or ¢ and a fourth parameter d.

The above general equation in terms of the compressibility factor is,
Z'—(1+B-U)Z* +(A-BU-U-W*)Z - (AB-BW’ -W¥)=0 (4.13)

where the dimensionless parameters A and B are the same as those defined in Egs.(4.7) and
(4.8), respectively, and

v=22 (4.14)
RT
wP

W= — 4.15
RT ¢ )

The two-parameter EOS are the most popular equations, where the parameters are expressed
by,

R'T.
a=0Q, —
P, (4.16)
RT.
b=0
v P, (4.17)

Note that the expressions for the parameters in the modified equations are similar to those of
the original vdW, but the coefficients have been generalised as £1; and £2}, The other
parameters, in EOS which use more than two, are generally of co-volume nature, hence,
expressed by an equation similar to Eq.(4.17), but with different coefficients.

The substitution of Eq.(4.12) into the expression for fugacity of a pure substance, Eq.(3.35),
results in the following generalised expression, using the same approach as in Example 4.1,

NS 2
In® = (Z —1) = In(Z — B) + et [n 22 ¥ U =V U +AW
JUR+4W?  2Z+ U+ U +4W?

(4.18)
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Fugacity coefficient for component ith in mixture

4.3 Mixing Rules

a= Z E xixj(ai ‘aj)o's 4.73)
L

b= 3 xxb, =3 ¥ xx(b,+b)/2=3xb, (4.74)
i i i

A mixing rule similar to that of b is also used for other parameters in EOS that contain more
than two parameters, when the additional parameters are of the co-volume characteristic,

c= Y xc (4.75)

It is common to incorporate an additional parameter in Eq.(4.71) to express the attractive
term between pairs of non-similar molecules,

142
ay = (i) (1-ky) (4.77)
where kj; is known as the binary interaction parameter.

Using the above description, the random mixing rule of the attractive term becomes,
0.5
a=22xixj(a, -aj) (1-k;) (4.78)
i

The use of binary interaction parameter for the repulsive term, particularly in mixtures with
high concentration of CO2 [44], has also been suggested, but has not gained popularity,

bjj = [(b; +bj)/2](1-K’5) 4.79)

where k’jj are the repulsive BIP.

Y
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Example 4.5.

The Soave-Redlich-Kwong, and the Peng-Robinson EOS are the most widely used equations
in the petroleum industry. It is common to express these equations by the following general
form,

- RT a
v—b (v+3b)(v+3,b)

where, 81, and, &2, are constants equal to 1 and 0 in SRK, and 1+ N2, and 1-4/2 in PR,
respectively.

Prove that the fugacity of each component in a mixture, using the above EOS and the random
mixing rules is given by,

b; A Z+3,B
Ind. =—(Z-1-1 Z—B—— 2 fa=b;/b |l
no, b( )= In( ) B, 6)[[ z;;a,]) a- J n( SB)
(E4.5)
Solution:
The fugacity coefficient is calculated from Eq.(3.31),
Ing, = j’ 9P —RT/V|[dV-InZ (3.31)
RT -V 8111 .

where V is the total volume. Hence, the equation of state is written in terms of total volume
by substituting v=V/n, where n is the total number of moles,

N
n=Yn
1

YY
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Vapor — Liquid — Solid Phases

| Phase Behavior Calculation O3 I i P
|

Treatment on No. of fluids (Lig. & Vap.) and solid phase
i HC rich
[ eteietee CO2 i 3 o35 o pplmn 1

Vap.
P L' CO2 rich | PR PR

_ (Displacing Oil with CO2)

A s s Vap,Lige,s o
Retrograde Condensation ;. .2
] 8 0l i s Liq e ®

Yy
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| Waxes -«
Formation & deposition of solid like .3
Asphaltic nature -

j'_'.",', r_\}';pl d\qﬁh—j'é\;b)é ;_é'jj_n:
s ,';,\,T; -~ =
oo g Hhh ol i Lyl .J'J'.

R iJ,n)'\h’_i; b‘ﬂq.’;_}b’v;ah:_,;%,.p.,a'r 4

S LS byl g bles 51+ ,s —  Hydrates

o e 2
sags 03la W OT & IS Olej a5 35 g 53 nomi g(@u,;@)avy,;,wt.,.‘,u

iy ol 4y il 53 sl
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" VLE Calculation Se-asls | fole Obuloce
F=n"+n" Q__/ S Ipr il = N phad 5
A
nt+n’ =1 (5-1) u Total Material Balance

4. Material balance for each component

z; = x;nt + ynV (5-2) u

(Partial Material Balance )

N N
in =1 « Liquid Zyi =1 « Vapor (5-3)
=1 i=1

e o) 50 0 53 ol ot 42l g it sl ol il

5.1 VAPOUR-LIQUID EQUILIBRIUM CALCULATIONS

Let one mole of mixture be flashed at pressure P and temperature T into n* moles of liquid and

nV moles of vapour. The total material balance for the system is,
n"+n" =1
with material balance for each component, i, as,

z,=x;n" +yn" i=1,2,. . ... N

(5.1

(5.2)

where z;, x; and y; are mole fractions of the component i, in the mixture, liquid and vapour,

respectively.

X =

™Mz
M=z

y; =1

1

where N is the total number of components in the system.

No. of Equation (5-2) =N

Yo

(5.3)
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<slee 2N+2 Xis yirnV'nL T éyﬂ’.“ 2
dseme 2N+2 iy g st — (5-3)5(5-1) o ¥stwe o

rsaT o i 4 (D-1) St astiad 4 (5-2) st ;s (Kmyi/ X)) Jobs e 10 L

[ Zi
[ *

Sy ey - x;=f(@Y)

kiz;

= =D - y=f@")

Vi

At equilibrium, the fugacity of any component, i, in the vapour is equal to that in the liquid.
The equality of fugacity can be expressed by the equilibrium ratio, Kj, as given by Eq.(3.43),

Ki=yi/x =12, .... N (3.43)

The material balance equations, Eqs.(5.1-3), and the equilibrium requirement, Eq.(3.43)
provide the required 2N+2 independent equations to determine the 2N+2 unknowns of x;, yi,

nL and n". The number of variables can be reduced, however, by combining the above
equations.

Substituting the equilibrium ratio K; = y;/x; into Eq.(5.2), and solving for x; and y; using
Eq.(5.1) results in,

z.
o 54
TR (K Y G4

No. of Equation (3-43) =N

EoS for for Liquid and Vapor =2

Total No. of Eqs.=2N+2

Yy
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K.z,
"I - e

. . . . . L, v
Similar equations can also be derived in terms of n instead of n .

For known values of K;, any of the above two equations can be substituted in Eq.(5.3) to
determine the value of n¥ (or n“). An iterative method is required to solve the resulting
equation. The following equation, known as the Rachford-Rice [1] equation, is generally the
preferred form, as its value monotonically decreases with increasing nY,

f(nv)=i(yj-xi)=i—‘7‘ilﬁi~o (5.6)

i=l i=l } + (Kl - l)nv h

The above equation yields a physically correct root for n between 0 and 1, provided that,

N

YKz >1 (5.7
i=1

and

N

Yz /K >1 (5.8)
i=1

" Rachford-Rice [9]:

1952 — Calculating Flash Vaporization HC Equilibrium

1

N N
z(k; —1)
f@n¥) =Zm TR = LT G-

a8 eV =y e by, b ZH g Ko e e

iy R cadudas }’:'rxnﬂL sl 0<n¥ <1 ‘

Ay a2l Y L OT iz 8 e g e T(NY) e

W g jho oY (51 4%y i byl

Z; k. L gy 1 o = = r
Zziki}l & Zk—!}- 1 ‘-J—F_.F-ﬁll-h- 'l—-'l_—n"--‘llﬁuluul_;|u|__-£._.-;'_;
i
YA
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The mixture is at its bubble point when n’ approaches zero. Hence Eq.(5.6) reduces to,

N
Y zK; =1 (5.9
i=I
and
yi =Kx, =Kz (5.10)

Al any temperature the bubble point pressure can be determined as the pressure at which

K-values satisfy Eq.(5.9). The bubble point is most sensitive to the mixture light components,
which exhibit large K values.

At the dew point, n" approaches 1. Hence Eq.(5.6) reduces to,

Yz, /K =1 (5.11)
i=1
and
X =y /K, =7, /K, (5.12)

The dew point pressure is that at which K-values satisfy Eq.(5.11). The dew point is most
sensitive to the mixture heavy components, which exhibit small K-values.

" Bubble Point

ZZ:""': = a;‘,.lc‘hlp‘,léuu‘_go-;;
=0 -

and

Vi = kix; = k;z; Xi = Z;

J‘ﬁé,\_;ug‘»q’_{:\-;sivﬂ&w _;L,._..L.‘.A__.b..-ZZiki ;| ul._o-dnao-'.al__«‘ww- ,5\,-_:433
ol S5 ol 2 B oS ST 1 L el e e b T s w1 MG ) S e

:A.;' C..-.‘,t.:‘_a\_a-

Y4
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Dew Point
Z;:l -:J.;)b'q.lp)lﬁuu_“‘ iiem 2
=1 - and
o aed— X_x_ = -z—l i, i
L k k )l i

e . =
Zifki <1 = =l . i
p Slp WS
)uh,!,\‘_.-a..-
Z:w"k’::i T b O sl 0

Example S.1.

It is often a convenient practice, yet reliable in most applications, to replace a reservoir
fluid by a binary mixture in simulating certain reservoir processes in the laboratory.
A reservoir hydrocarbon fluid has been modelled by a mixture of C] and nCjg
(60-40 mole%). The reservoir temperature and pressure are 377.6 K and 27.58 MPa,
respectively. The oil is produced through a one stage intermediate separator at
344.3 K and 6.895 MPa.

(a) What is the state of the fluid at reservoir conditions? Use the GPA K-charts given
in Appendix D.

(b) Calculate the bubble point pressure.
(c) Equilibrium flash equations for a binary system can be solved analytically, when

using K-charts. Derive the appropriate expression, and calculate the gas and liquid
mole fractions, and the phase composition, at the separator conditions.
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Solution:

Component 1: Cy Component 2: nC10

(a)
The convergence pressure at 377.6 K (220 °F) is estimated from Figure D.1
(Appendix D): Pg=5000 psia (34.47 MPa).

The equilibrium ratios of C1 and nC|Q are then read from Figures D.2 and D.13
(Appendix D), respectively, at 377.6 K and 27.58 MPa (4000 psia):

K,=1.4 K,=0.13
N
Checking ZziKi,

i=l

2
Y 2,K,=0.6x1.4+0.4x0.13=0.89<].

i=l

Hence, the fluid is a compressed (undersaturated) liquid.

N

For an undersaturated vapour, Zzi/Ki < 1, whereas for a two phase system both
i=1

Eq.(5.7) and Eq.(5.8) should be satisfied.

(b)

At the bubble point Eq.(5.9) must be satisfied. The K-values are read from the charts
at 377.6 K by iterating on pressure:

R
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- o

Oy GYbw

P, psia, (MPa) K K> 71K, 7Ky 2
ZziKi
i=1
3500, (24.13) 1.60 0.06 0.96 0.02 0.98
3000, (20.68) 1.80 0.03 1.08 0.01 1.09
3400, (23.44) 1.64 0.05 0.98 0.02 1.00
-
.
Rachford-Rice for Binary:
zy(ky —k3) 1
v 1—k,
nYi=
k1 T 1
.J—'Z\._“Az a“J_U_’; Jﬂ;&p)&g—c‘b Jale é."o-); e -‘;;l}T e L
F=N—K+2=2—-2+2=2
P,T=+v - k=constant - ESTLIS R 4 PV
fig D.2 separator con. kl 38 kl = 4.005
Experimental
saparator con.
fig D.13 =————= k; = 0.0029 k> = 0.0027

Yy
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nY 51 » Rachford-Rice dalzs >

— ' =0.457
— nl = 0543
e mal x; = 0.263
B iy %, = 0.737
. = 0.999
N S v
(1) v, = 0.001
x; = 0.2496 , v, = 0.998
Experimental:
x, = 0.7504 , y, = 0.002

Yy
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N
The experimental value is 23.50 MPa (3408 psia) [2]. Note that ZZiK‘t strongly

i=1
depends on the K-value of methane, due to its high volatility and concentration. A
reasonable initial guess for a reservoir oil in most cases could be the pressure at which

(Kz)c,=1.

()
For a binary system Eq.(5.6) reduces to:

nY =[z,(K, -K,)/(1-K,)-1}/(X, - 1) (E5.1)
The degrees of freedom for a binary vapour-liquid system at equilibrium conditions
are only two, according to the Gibbs phase rule, Eq.(1.2). Hence at a given

temperature and pressure, the K-values are constant and independent of the overall
composition.

Using Figures D.2 and D.13, at 344.3 K and 6.895 MPa (1000 psia),

Ky=3.8, K,=0.0029, (experimental values K,=4.005, and K,=0.0027 [49]).
Eq.(E5.1) results in, vapour mole fraction: nV=0.457, liquid mole fraction: n>=0.543.
Eqgs.(5.4-5) give the composition of equilibrated phases as follows,

x =0.263, x,=0.737, y =0.999, =0.001
1 2 1 yZ

(x,=0.2496, x,=0.7504, y=0.9980, y=0.0020, experimental values).

Y¥
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Input 2, BT,
Companent Propertics

|

\'E:s:imalc K;, using Eq.(3.66)

+

Calculate x;, ¥;. using Eqs.(5.4-6)

i

Set-up E0OS
fior Liquid

Calculate Z1-

[

1

Sel-up EDS
for Vapour

Caleulate Y

Calculate riL

Calculate f;¥

Adjust K=
Ki g (171

Yo

Figure 3.1, Flow charl of flash colpulations using equation of state.
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Zyin

el At b — suZmax S

é—p‘c_bg_.:-)\‘ s éxzrnin;\

T Ex 5-2 5-1 Je Bubble Point s oyl s
fiLz(pl-inp xi=zi=~[
£ =¢i P yi = kx; =+

= Calculate P, of the fluid for Ex 5-1 using Peng Robinson EO
S, ( the fluid was liquid )

3% =3 b Rachford-Rice dsiw 5l NV atows glo 4 D-2 Jloa o 5,00 3 1

=S o a1 Y =KX sl

1K slas! 16 8 psalie oty 4 o oSen s fom J b 5

n' >1 allvap
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nY <1 alllig

A4



631 5L ) el adad 50 — 55 g S oot awrdigen 0SS — g Loouw 01D

Oy GYbw

Chapter 4: Equations of States
Chapter 5: Phase Behavior Calculations

(1) The properties of Component 1, Cl, and Component 2, nC10, are read from Table
Al in Appendix A.

Number Component MW Te Pc  acentric
kglkgmol K MPa _ factor

1 Methane 16.043 190.56 4,509 0.0115

2 n-Decane 142.285 617.7 2110 04923

The Peng-Robinson EOS parameters for fluid components at T=377.6 K are
calculated as follows,

Comp. X, o, m o a b
MPa.(m*/kgmol)* MPa.(m*kgmol)* _m*kgmol
Equation 4.27 4.29 4.23 a o 4.27
1 0.6 0.24957517 0.39665578 0.70275305 0.17538971 0.02680134
2 0.4 3.71576076 107281059 1.52284853 B.70423787 0.18935786

The liquid mixture parameters, b and a, are calculated using the mixing rules,
Eqs.(4.74) and (4.78), respectively. The binary interaction parameter between
methane and n-decane is read from Table A.4.3 in Appendix A: k,,=k,,=0.0500, and
k, =k,=0.

b= x,b,=0.6x0.02680134+0.4 x0.18935786=0.09182395 m’/kgmol

a= 22";‘1(3- ‘aj)u's(i -ky)=

0.6x0.6x0.17538971 x 1+ 0.6x0.4 (0. 17538971 x8.70423787)"* x (1-0.050)+
0.4 x0.6x(8.70423787 x0.17538971)°° % (1-0.050)+ 0.4x0.4x8.70423787x 1=
2.01923838 MPa.(m"/kgmol)’

Yv
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L4 -

Peng-Robinson (PR)

2,5 il | e dbeae SRK\;_._;LE.,;G\.. el o R kOB S sl

0, =04572 0, = 0.077796 m = 03746 +1.542w— 0.2699w?
m duloce
r mcha_b b\:{;ﬁs.‘vx--h'ré-»o_‘i\ﬂ@\:dbf g;;q-d‘ﬂz.ja_fk_;‘ Qs'_)\éu_)l—‘j a3ls 3l

: ..L'A; eslid W e
Heavier Components (w; > 0.49):

m = 03796 +1.435w — 0.1644w* + 0.01667w>

PQ\-‘,.- oy e p b
z*—(1-B)z*+(U4—-2B—-3B)z—-(U4B—-B*-B¥ =0

Pure component fugacity coefficient

vdW: u=0 w=0
SRK:u=b w=0
PR: u=2b w=b

Y oazr e o cdoles glyr pogos JS5 S

uP

Us— 4.14
RT (4.14)
wP

W= — 415

= _— (4.15)

The two-parameter EOS are the most popular equations, where the parameters are expressed
by,

a=0, R:'
. (4.16)
RT.
b=12
v P, (4.17)

YA
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(2) A bubble point pressure of 27.58 MPa (4000 psia) is assumed as the initial guess.
The final result should not depend on the initially selected value.

(3) The Wilson equation, Eq.(3.66), is used to estimate the equilibrium ratios at 27.58
MPa, and 377.6 K: K,=2.457. and K,=0.0004684,

(4) The vapour composition is calculated using Eq.(3.43), y=Kx, resulting in

y,=1.474, and y,=0.0001874. Note that Xy, is not equal to | which only occurs at the
correct bubble point pressure.

(5) The Peng-Robinson EOS, Eq.(4.27), is set-up for both phases. The dimensionless
values of EOS parameters are calculated from Egs.(4.7-8).

Liquid Phase:

A=5.6501, and B=0.8067, which results in the following cubic equation for the liquid
compressibility factor, Eq.(4.30):

Z’-0.193327°-2.08487Z-3.38239=0
The above equation has only one real root (Appendix C), Z'=1.0985
Vapour Phase:

A procedure similar to that of liquid results in A=1.0661 and B=0.3468 for the
vapour phase, with only one real root for its compressibility factor cubic equation,

Z"=0.89802.

(6) The fugacity of each component is calculated in both phases, using Eq.(E4.5),
N

A 22 X;a; b

R T = " b | Z+(1-+2)B
o= @ D-Z-B -5 o3 "2 b ["Zraryos

)

(E5.2)
where a;=(aa)"’(1-k,).

The calculated values of fugacity coefficients, fugacities, and equilibrium ratios are as
follows:

Comp. P, MPa  x ¥ ¢,:- 4.:" fil-, MPa fi"' MPa K,

Equation E5.2 E5.2 ¢,'~xlp ¢:“'}.'p ¢|-,-¢,"
1 27.58 0.60000 1.474 1.3643 0.9157 22.56 37.22 1.4899
2 27.58 0.40000 0.0001874 0.003345 0.02295 0.03690 0.0001186 0.14575

Clearly the fugacity of components are not equal in the two phases at the above

N
selected pressure. The resulting error value of Er[l—fiL!fj"f )’ =10° is far remote
1

from the objective value of <107,

Y4
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(8) Now with the new pressure and equilibrium ratios, steps (4) to (7) are repeated.
The results of a few initial, intermediate and final iterations are given in the following

tables,
Iter. No. Pres., MPa ¥, s - A
2 26.24 0.8932 0.05829 1.0513 0.91638
3 25.59 0.9329 0.04261 1.0285 0.92134
14 24 .31 09774 0.02225 0.9828 0.9289
29 24,294 097777 0.022228 0.98213 0.92877
Iter. No.  fL fY fy f: K, K, Error
MPa MPa MPa MPa _
2 21.86 20,92 0.03383 0.04628 1.5548 0.10653  7.43E-02
3 21.52 21.13 0.03246 0.04182 1.5841 0.082677 5.05E-02
14 20.87 20.87 0.02989 0.2991 1.6292 0.055615 4.97E-07
29 20).861 20.861 0.029834  0.029834 1.6296 0.055569 3.58E-12

The change of Gibbs energy can be calculated using Eqgs.(3.14) and (3.27), with fugacities
determined by EOS. For example, using the Peng-Robinson or Soave-Redlich-Kwong EOS

with component fugacity coefficients as,

b. A u Z+3,B
Ino. = —2(Z-1=In(Z - B) = ——— 22 a; |[/a=b, /b |In(=—2= E4.5
I'l¢'1 b{ ) n( ) B(ﬁz—ﬁl)[( < xjaj] a J n(z+5IB} ( )

or using the total fugacity coefficient given by Eq.(4.18), the system molar Gibbs energy
difference at the two roots Zy, and Z is determined as,

Z,-B A Z,+38B) Z,+3,B
- = —Z,)+In(= - | — b2 5.13
O OIRT = G, 8 86,50 "[{Zwaza}[zhw.ﬂﬂ o

If the above is positive, Z) is selected, otherwise, Zy, is the correct root.

Example 5.3.

The Peng-Robinson EOS is used to predict the density of a single phase equimolar
mixture of C, and nC, at 396 K and 3.86 MPa. Apply the minimum Gibbs energy

concept to select the proper root.
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Ex 5-3
PR — py of mixture C; — nCy (equimolar)
T=396K , P =3.86 MPa

Apply the minimum gibbs energy to select the proper root?

o ZhoZl s,

Pm = 7pr

Z: Zhor Zl

Solution:

The parameters of EOS are determined for the equi-molar mixture of C; (Component
1) and nC, (Component 2}, at 396 K,

Comp. X a m o a b
Equation 4.27 4.29 4.23 a o 4.27
1 0.5000 1.01770302 0.60201108 0.95856673 0.97553625 0.05631263
2 0.5000 1.50486716 0.6704416 1.04728482 1.57602453 0.07243918

Mixture parameters, b and a, are calculated using the random mixing rules, Eqs.(4.74)
and (4.78), respectively, with k,;= 0.0033 from Table A.4.3 in Appendix A.

b= x,b,=0.0643759 m’/kgmol

ap=ay= (1-k;,)(a,2,)""=1.23585538 MPa.(m'/kgmol)’

2 2
a= ZI“ZI“x.x [a,=1.25581788  MPa.(m"/kgmol)’

The above values result in the following dimensionless parameters at 3.86 MPa:
A=0.44715879 and B=0.07547177

Substituting the parameters in Eq.(4.30) results in the following cubic equation,
Z2°-0.9245282Z7+0.27912728Z-0.027622=0

The above equation has three real roots:

Z,=0.394179 Z, =0.280758 Z,=0.249591

Y
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Rejecting the intermediate root, 7, and substituting 81=1+ 72, and 82=1-/2 in
Eq.(5.13) to obtain the expression for the Peng-Robinson EOS, we obtain,

(G, - G,)/RT =-0.00046

Hence, Z, represents the stable phase with a lower energy level, and the fluid is
vapour-like.

The density is calculated as,

pu=P/(ZRT)=3.86/(0.394179x 0.0083144x 396)=2.9742 kgmol/m’

M=YxM=51.109 kgmol/mol

p= Py M=152.01 kg/m’
When at a selected temperature-pressure, EOS gives one real root, that root will be expected to
be the correct root for the phase under consideration. Phase behaviour calculations using EOS
is an iterative process as compositions of all or some of the phases, hence the parameters of

EQS, are not known in advance. The initially estimated composition for a phase may provide a
wrong single root, as shown schematically in Figure 5.2.

Yy
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Lo i EX 4-5 e

il A 2%} %a;; b Z+6;B
Ing; =~ (Z—1)—In(Z—B) — Al
n¢z b ( ) n( ) 3(62—61) [ = b nz+813

(Vander Waals - 6;=6,=0

IR > §=186=0
\ 8, =1—+2
GR

ﬁ=ln¢i

Z13Zp a2y, 93 55 oS 537 rm I

G — G Z;—B
RT S (Zh Zz) +In (Zh = B)

A 1 Zl 5 813 Zh + 823
B3, — 8  |\Z + 6,8 )\ Zy + 615

if >0 Z =+ - lig—like
e }Stable Dhiise

if <0 Z,=+ - vap-—like

¥y
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Stability Limit

A main application of determining the intrinsic stability limit is in determination of the cntical
point by an equation of state. It was noted in Figure 5.8, that the binodal curve and the phase
envelope meet at the critical point. This feature has been used successfully to determine the
critical point of multi component systems, as both the binodal curve and the phase envelope can
be expressed by energy terms, similar to those in Egs.(3.8), and (5.41), and rigorously

calculated using thermodynamic relations.

Gibbs Energy, g --—--->

0 xF 1
Composition, x |
Figure 5.9. Intrinsic stability. limit of a binary mixture at constant pressure and temperature,

Example 5.6.

Prove that the mechanical stability limit for a pure compound, as described in Figure
5.8, can be derived by the general energy concept. Find the stability limit of normal
hexane at 473.0 K, using the Soave-Redlich-Kwong EOS (SRK).

Solution:

Describing the stability limit criterion, Eq.(5.41), in terms of the Helmholtz energy,
Eq.(3.12), with variables of temperature and volume, we obtain,

d’A=0
where,

dA =-SdT - PdV + 3 p,dn,
i

Y¥
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For a pure compound at constant temperature the above reduces to,
dA=-PdV

Hence,
@A1IVE)y ==~ @P/ V)7 =0

That is, the stability limits for the vapour and liquid phases of a pure compound lie at
the maximum and minimum pressure values, respectively, on the isotherm as
described by EOS.

Calculating the derivative of pressure with respect to volume at constant temperature,
using SRK, we obtain,

v +(2b-2a/RT)v' +(b* +3ab/RT)v* —ab* /RT =0

The EOS parameters for normal hexane are calculated at 473.0 K as follows:

Te Pc w a, m [y a b
K MPa MPa.(m*/kgmol)? MPa.(m*kgmol)* m'/kgmol
Equation 4.22 4.25 4,23 a, o 422

5076 3.025 02659 2517012 0938436 1066155  2.683527  0.120877

Substituting the values of a and b in the above equation results in,
vi1.1229661v'+0.26205757v*-0.00120518=0
with the roots as:

v,;=-0.06014 m*/kgmol
v;= 0.08275 m’/kgmol
vy= 0.30412 m’/kgmol
v,= 0.79623 m’/kgmol

The first two roots are not acceptable, i.e., one negative and the other smaller than
b=0.120877 m’/kgmol, whereas the third and fourth roots represent the volume limits

for liquid and vapour phases, respectively. The associated pressures at the stability
limits can simply be determined from SRK by substituting the values of volume and
temperature,

P'=0.6995 MPa P'=2.148 MPa

Yo
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Compositional grading

Table 5.1. Variations of fluid composition with depth in a reservoir,

Fluid D, Well | C, Well 2 B, Well 2 A, Well 2
“Depth (meter subsca) T 3136 3156 3181 317
Nitrogen 0.65 0.59 0.60 0.53
Carbon Dioxide 2.56 2.48 2.46 2.44
Methane 72.30 64,18 59.12 5492
Ethane 8.79 8.85 8.18 9.02
Propane 4.83 5.60 5.50 6.04
i1-Butane 0.61 0.68 0.66 0.74
n-Butane 1.79 2.07 2.09 2.47
n-Pentane 0.75 0.94 1.09 1.33
Hexanes 0.86 1.24 1.49 1.71
Heptanes 1.13 2.14 3.18 3.15
Oclanes 0.92 2.18 2.75 2.96
Nonanes 0.54 1.51 1.88 2.03
Decanes 0.28 0.91 1.08 1.22
_UndecanesPlus 349 = 600 9325 . 10.62
Molecular Weight 33.1 43.6 55.4 61.0
Undecanes plus characteristics
Molecular Weight 260 267 285 290
Specific gravity 0.8480 0.8625 0.8722 0.8768

Depth

Qil

Pressure —- Pressure

Figure 5.10. Phase variations in reservoirs with compositional grading.

Y
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Table 5.2. Properties of fluids at different depths in the North Sea reservoir.

Fluid D, Well 1 C, Well 2 B, Well 2 A, Well 2
Depth (meter subsea) 3136 3156 3181 3217
Measured Reservoir Pressure, MPa 44,93 44 89 44 4] 45.35
Measured Reservoir Temperature, K 384.2 3798 3809 382.0
Density at Res. Pressure, kg/m® 400.4 530.8 5517 573.4
Saturation Pressure, MPa 39.0 37.8 373 33.0
Saturation Point Dew Point Dew Point Bub. Point Bub. Point
Density at Sat. Pressure, kg/m’ 397.4 503.0 540.0 546.2
Separator Pressure, MPa 6.5 1.6 1.7 1.2
Separator Temperature, "C 2854 308.1 3109 290.9
Separator GOR, m"/m’ 1005.0 611.0 390.0 304.0
Tank Oil Specific Gravily 0.7877 0.8170 0.8254 0.8185

Yv



