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Chapter 4. Equations of States

Multi Component System
. 1 oo [[dP RT -
it ket — — i=12,..,N
n@; = L [(a"i)T,V,n,-;tj S|V —InZ
V:Total Volume n=xn
Z: Compressibility factor for mixture Z = PV /nRT

4.1 VIRIAL EOS AND ITS MODIFICATIONS

The virial equation is based on theories of statistical mechanics [2], and can be expressed as
an infinite series of either molar volume (molar density), or pressure,

Z=1+B/v+C/v'+D/v +.. 4.1)
(Z=1+4Bp,, +Cpj, +Dpy, +......)

or,

Z=14B’P+C’P2+D'P3+.... (4.2)

where Z is the compressibility factor, v and p are the molar volume and the molar density,
respectively, and P is the pressure. B, C, D, etc., are called the second, third, fourth, and so
on, virial coefficients, and depend only on temperature for each compound.

Virial EoS:

_PV _ ’ D2 D3
Z_ﬁ_1+BP+CP +D'P° +... V=V(P, T)
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Starling Modification of Benedict-Webb-Rubin EOS (BWRS)

The Benedict-Webb-Rubin EOS (BWR) [1] is an empirical extension of the virial EOS. A
modification of the Benedict-Webb-Rubin EOS as proposed by Starling [3] with 11
parameters has been applied successfully to petroleum reservoir fluids,

P =p,RT n-(BnRT E AL,—53-+9: —'7:—31. i,+(hRT—a—p—)p.t,+ﬂ{a+E\llpﬂ,
™ T T T/ T) @3)

3
+%){—{l + wi,}exp{—ypi,)

where p,, is the molar density and the 11 coefficients can be evaluated from the following
generalised equations:
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P Bo = 0.443690 + 0.1154490)

PucAa _ 1.28438 — 0.92073 lw
RT,

£

PuCo _ 0 356306 + 1.7087 10
RT" .

D
%‘[T = 0.0307452 + 0.1794330

—pRM,';E“ =0.006450 - 0.022143w exp(-3.8m)

Py b =0.528629 + 0.34926 1w

Pyd _ 0.484011 + 0.7541300
RT

5

Pucl _ 00732828 +0.4634920
RT?

4

Po 0 = 0.0705233 - 0.044448w

Pu€ _ 0504087 +1.322450
RT'.

P,y = 0.544979 -0.270896m
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4.2 CUBIC EQUATIONS OF STATE

van der Waals improved the ideal gas equation by considering the intermolecular attractive
and repulsive forces, and introduced his well-known equation of state in 1873,

a
(P+—)(v—-b)=RT (4.4)
v
where 8/v? and b represent the attractive and repulsive terms respectively, and v is the
molar volume.
As the pressure approaches infinity, the molar volume becomes equal to b. Hence, b is also
considered as an apparent volume of the molecules and called co-volume. It should be

always less than the molar volume v.

The above equation in terms of volume or compressibility factor takes a cubic form as
follows:

v (b +g]v= +(%}v—% -0 “.5)
ar
Z'~(1+B)Z* + AZ- AB=0 (4.6)

where the dimensionless parameters A and B are defined as,

i @7
(RT)
bP
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Figure 4.1. Volumetric behaviour of pure compound as predicted by cubic EOS of van der
Waals type.
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Example 4.1.

In Example 3.3, the solubility of methane in water was calculated by assuming the methane
fugacity coefficient equal to one. Use vdW to estimate the fugacity coefficient and improve
the accuracy of predicted gas solubility.

Solution:

Substituting the pressure in the fugacity expression for pure compounds, Eq.(3.35), using
vdW, we obtain,

Ing=(Z-1)-InZ+

=(Z-l}—]nE+L

Integration of the above equation resulls in,

1 v al
Int={(Z-1)=-InZ+—| RTIn -
o=( ) RT[ v—h v]..

Implementing the limits, and making the equation dimensionless, using Eqs.(4.7-8), we
obtain:

Ing=(Z-1)-In(Z-B)-AlZ

The parameters of vdW are calculated, using Eqs.(4.9-10) and methane critical properties
given in Table A1 in Appendix A, as,

27( R*T? ,
a= a T =(2T/64)(0.0083 1 44 190.56)/4.590=0.230274 MPa.(m Mkgmol)’
4
1 RT, ;
b= E(—-};——]:{l!ﬂ}x 0.0083144x190.56/4.599=0.304254 m*/kgmol
=

with the dimensionless values, defined in Eq.(4.7-8), as follows,

A=1.556251 B=0.902574
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Substituting the above values in Eq.(4.6), results in the following cubic equation for Z,
Z'-1.90257 Z*+1 55625 Z-1.40463=0
with only one real root,
Z£=1.49069
Substituting the above value of the compressibility factor in the fugacity expression results in,

¢=0.97773

Hence the concentration of dissolved methane in water, corrected for the fugacity coefficient,
is,

£ =Px=65 x0.97779 MPa = (1.4378x10° MPa/mol fraction) % x,

xp =4 42x 107 mole fraction of methane in water.

Two Parameter EOS

Redlich-Kwong (RK) EOS

(s sl ) el L

2m2

a= naR T 0, =04274
pC

b=0, ? 0, = 0.08664

4.2.1 Two-Parameter EOS

Redlich and Kwong [10] modified the attractive term of vdW as,
P=RT/v-b)—a/T" v(v+b)] (4.21)

The values of £2, and £, were considered to be constant, hence, determined to be 0.42747
and 0.08664 respectively, using Eq.(4.9).
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Example 4.3.

A class of equations relating volumetric properties to temperature and sure, is that based
on the corresponding states principle, which considers that fluids behave identically at
conditions of ﬂml reduced properties. Reduce the Redlich-Kwong EOS to a corresponding
states form of Z=Z(Ty, Pr). Compare the result for T=1.5, over a Py range of 0.3-3, with that
of the generalised compressibility chant shown in Figure 2,22,

Solution:

The Redlich-Kwong EOS in terms of the compressibility factor is the same as Eg.(4.26), with
the following expressions for A and B according to Egs.(4.7) and {4.8), respectively,

A =aP/(RT)* = (0.42747T°R*T2 /P,)P/R*T? = 0.42747T>°P,

B =bP/RT = (0.08664RT. /P )P/RT = 0.08664T'P,

Substituting the above two expressions in Eq.(4.24), results in,

Z' - Z* +[(0.42747P, / T7* - 0.08664P, /T, - (0.08664P, /T, )* |Z - 0037036} / T} =0

Substituting T,=1.5 and various P, values in the above equation results in a cubic equations, with
the results as follows. The comparison with the values of Z read from Figure 2.22 is also shown.

P, 0.5 L0 2.0 3.0
Z RK 0952 0907  0.534  0.79%
7 Fig.2.22 0950 0903 0.823  0.J7%

" Soave-Redlich-Kwong (SRK)

.aslff&‘)'j“.-’-ﬁﬁl;é)ﬂq Sy Tr'os _gt-.-q._a

a = [1+m(1—T29))?

m =0480+ 1.574w— 0.176w?

©=—log(p=)| _ -1
r—Vu.
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= (RT)? =T " RT

Soave-Redlich-Kwong EOS (SRK)

Soave [21] replaced the temperature dependency of the attractive term in RK, T,-%3, by a
more general function o

P=RT/(v-b)-aca/[viv+b)] (4.22)
where

a. = 0.4274T R2T 2/ P,

b= (.08664 R T/ P,

and

a=[l+m(l-T205? (4.23)

The function o was selected, and m was correlated with the acentric factor by equating
fugacities of saturated liquid and vapour phases at Ty =0.7.

m=0.480+1.5740-0.17602 (4.24)

Soave et al. [22], later suggested to divide the value of m determined from the above
equation by 1.18 to improve the results.

AR
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r -
Peng-Robinson (PR)

s, ?Q-G:L\_JJ&QL* SRK\.;&.;&);@L-@.J;"-_J_ sk DAt S jalala a

0, =04572 0O, = 007779 m = 03746+ 1.542w— 0.2699w>
m ducloee
F fnd:._;b D\gu'—-‘q-'.:xc.u'r;.—eq&‘ﬁ&\:.}b};g:”&&‘fh}\Af)\ég)u.;b)'l

> .J-';; eslid W e
Heavier Components (w,; > 0.49):

m = 03796 + 1435w — 0.1644w* + 0.01667w>

z*°—-(1-B)z*+(4-2B-3B9)z-(4B-B*-B¥ =0

21. Soave, G: “Equilibrium Constants from a Modified Redlich-Kwong Equation of State”,
Chem. Eng. Sci., 27, 1197-1203, (1972).

22. Soave, G., Barolo, M. and Bertucco, A: “Estimation of High Pressure Fugacity
Coefficients of Pure Gaseous Fluids by a Modified SRK Equation of State”, J. Fluid Phase
Equilibria, 91, 87-100 (1993).

23. Graboski, M.S. and Daubert, T.E: “A Modified Soave Equation of State For Phase
Equilibrium Calculations. 1. Hydrocarbon Systems”, Ind. Eng. Chem. Process Des. Dev.,
17(4), 443-448 (1978).

24. Peng, D.Y. and Robinson, D.B: “A New Two-Constant Equation of State”, Ind. Eng.
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Peng-Robinson EOS (PR)

Peng and Robinson [24] modified the attractive term mainly to improve the prediction of
liquid density in comparison with SREK,

P =RT/v - b) - aof{v(v + b) + b(v - b]] (4.27)
where,

8, =0457235R2 T 2/ P,

and

b=0077796 R T_ /P,

They used a similar form of « as proposed by Soave, Eq.(4.23), but used vapour-pressure
data from the normal boiling point to the critical point, and correlated m as,

m = 0.37464 + 1.5422w - 0.2699207 (4.28)
The correlation was later modified to improve predictions for heavier components [25],

m =0.3796 + 1.485w - 0.16440 + 0.01667a (4.29)

PR in terms of the compressibility factor Z takes the following form,
Z3-(1-B)Z2 + (A -2B -3B2) Z - (AB-B2-BH) =0 (4.30)

PR is obtained by substituting u and w in Eq.(4.12) by 2b and b, respectively.

Volume Shift

Peneloux et al. [26] were the first who introduced the volume shift concept, i.e. shifting the
volume axis, and applied it to SRK,

VeOr= v - @31)

where veor is the corrected molar volume, and c is the correction term determined by
matching the measured and predicted saturated liquid volumes at Ty = 0.7.

EOS are applied to multicomponent mixtures by introducing mixing rules to determine
mixture parameters, as will be described in Section 4.5. The following mixing rule is used
to determine ¢ for mixtures:

N
c=Y xc (4.32)

where, xj, is the mole fraction of component, i, in the mixture.

Peneloux et al. correlated the volume translation parameter ¢ as,

RT.

[+

¢ =0.40768(0.29441-Zy,)

(4.34)
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Jhaveri and Youngren [27], similarly to Peneloux et al., applied the volume shift concept to
PR, and related ¢ to the parameter b, by defining a dimensionless shift parameter, S;,

S,=c/b (4.35)

Sg was determined by matching the predicted and measured molar volumes for various
hydrocarbons. The shift parameters for light compounds are given in Table 4.1.

Table 4.1.

Values of shift parameter in Peng-Robinson equation of state.

component C Ca C3 iCq nCq iCs nCs Cs
Sg -0.1540  -0.1002  -0.08501  -0.07935  -0.06413  -0.04350 -0.04183 -0.01478
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b Light Components - Table 4.1 E

Moleculur'Weigj*n’r(———/J Table 4.2

The authors correlated the shift parameter to the molecular weight as,
Sp=1-y/M" (4.36)

where y and ¥ are positive coefficients. Suggested values for the coefficients are given in
Table 4.2.

Table 4.2.

Coefficients of shift parameter correlation, Eq.(4.36).
Component Type W b

Paraffins 2.258 0.1823

Naphthenes 3.004 0.2324

Aromatics 2.516 0.2008

\R4
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Example 4.4.

Calculate the vapour pressure of normal hexane at 477.6 K using PR. What are the predicted
values of the saturated vapour, and liquid density?

Solution:

At the saturation point, the fugacities of hexane as vapour and liquid should be equal. Hence,
a pressure is assumed and the fugacities are calculated, using PR. The pressure is iterated
until the two calculated fugacities become equal.

Substituting u=2b and w=b in the generalised fugacity expression for pure compounds,
Eq.(4.18), results in,

P A | Z+(1-42)B
Ing=(Z-1)-In(Z B)+2Bﬁlnz+(1+\{2_)B

The parameters of PR are calculated, using Eq.(4.27), and normal hexane critical properties,
Table A.l in Appendix A, as,

ac = 0945‘1"2351{2T‘;z,*'Pc =0.457235x(0.0083144x507.6)"/3.025=2.692273 MPa.(m'/kgmol )’

b = 0.077796 RT/P. = 0.077796x 0.0083144x507.6/3.025=0.108539 m’/kgmol

The temperature dependency factor of the attractive term, o, is calculated from Eq.(4.29), and
Eq.(4.23), for 0©=0.3013 at T=477.6/507.6=0.94089,

m =0.3796 + 1.485w - 0.164402 + 0.01667w>= 0.812562
a={1+m( - T,05))2=1.049349

Hence,

a=oxa= 2.825135 MPa.(m’/kgmol)’

Assuming a saturation pressure of 1.86 MPa, using Figure 1.3 or Eq.(1.10), the two
dimensionless parameters, defined by Eqs.(4.7-8), are calculated as,

A=0.33324353 B=0.0508396
which results in the following cubic equation for Z, Eq.(4.6),
Z°-0.9491604 Z°+0.22381034 Z- 0.0142259=0

The above equation has three real roots, Appendix B,

Z,=0.62954

7,=0.10557
Z,=0.21405
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Substituting the above two values of the compressibility factor in the fugacity expression
results in,

&=4"=0.729704
0=¢"=0.746610

For a pure compound the equality of fugacity reduces to the equality of fugacity coefficient.
The comparison of the calculated fugacity coefficients indicates that the assumed pressure is
close to the saturation pressure, but requires improvement. The next pressure may be
estimated as,

P(m) = [P(¢L f¢v )](rJ

where r is the iteration number.

The above approach results in a pressure equal to 1.9031 MPa, for the next step. The
iteration converges to,

P'=1.9458 MPa

0"=¢"=0.71716

The estimated value by the Lee-Kesler equation, Eq.(1.10), is 1.936 MPa.
The cubic equation at the above pressure is as follows,

Z7-0.9468152 Z*+0.23376031 Z- 0.015562=0

with the following roots:

Z,=0.60089

Z,=0.10958

7,=0.23634

Rejecting the intermediate root, and calculating the molar volume, Eq.(1.5), we obtain,
v=ZRT/P v"=0.22362 m’/kgmol v'=1.22623 m’/kgmol

The volume shift for normal hexane is calculated, Eq.(4.35), as,

c=S5,b=-0.01478 x0.108539=-0.001604 m’/kgmol

which results in the following corrected molar volumes, Eq.(4.31),

v*=v-c vh©=0.22523 m’/kgmol vV "=1.2279 m*/kgmol

The densities of the saturated phases are:
p=M/v p“=382.6 kg/m’ p'=70.18 kg/m’

The measured values, Figure 1.5, are p"=423, and p'=72 kg/m’. The modified Rackett
equation, Eq.(1.12), predicts a saturated liquid density of 424.3 kg/m’.
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vdW: u=0 w=0
SRK:u=b w=0
PR: u=2b w=b

¥ az o > cdoles sy sogee S5
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RT a
P_'«n-'—b-1.r7'+u1|.-'—1«ll.'2 “.12)

In a two-parameter form of the equation u and w are related to b whereas in a
three-parameter form u, and w are related to b, and/or a third parameter ¢. In a four-
parameter modification u and w are related to b and/or ¢ and a fourth parameter d.

The above general equation in terms of the compressibility factor is,
Z'—(1+B-U)Z* +(A-BU-U-W*)Z - (AB-BW’ -W¥)=0 (4.13)

where the dimensionless parameters A and B are the same as those defined in Egs.(4.7) and
(4.8), respectively, and

Us— 4.14
RT i )|
wP

W=— 4.15
RT ¢ )

The two-parameter EOS are the most popular equations, where the parameters are expressed
by,

a=80, R:‘
. (4.16)
RT.
b=0
v P, (4.17)

Note that the expressions for the parameters in the modified equations are similar to those of
the original vdW, but the coefficients have been generalised as £};and L2y, The other
parameters, in EOS which use more than two, are generally of co-volume nature, hence,
expressed by an equation similar to Eq.(4.17), but with different coefficients.

The substitution of Eq.(4.12) into the expression for fugacity of a pure substance, Eq.(3.35),
results in the following generalised expression, using the same approach as in Example 4.1,

T 2
In® = (Z - 1) = In(Z — B) + et n 22+ U = VU +4W
JUR+4W?  2Z+ U+ U +4W?

(4.18)
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4.3 Mixing Rules
4.3.1. Random Mixing Rules
B= Zinijij (4.68)
i

where Bj; is the coefficient due to interaction between molecules i and j.
Employing Eq.(4.1), the second coefficient is determined as,

B = lim(9Z/dp)

p—0

Using a van der Waals type equation to describe Z at low pressures, the above equation
results in,

B=1im(dZ/dp) =b-(a/RT) (4.69)

p—0

Hence, the mixing rules for a and b, at least at low pressures, should be compatible with
that in Eq.(4.68), i.e., it should be of quadratic form.

a= zz:cixj(ai 'aj)o.s 4.73)
b=3 ¥ xxb, =3 ¥ xx(b+b)/2=3 xb, (4.74)
i i i

A mixing rule similar to that of b is also used for other parameters in EOS that contain more
than two parameters, when the additional parameters are of the co-volume characteristic,

c= Y xc (4.75)

AR
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Quadratic Mixing Rules P33 4o 33 LY oyilad
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C—= Zx-c-
G orit i

The attractive force between molecules i and j, represented in EOS by parameter, ajj, which
is of an energy nature, can be expressed in a simple geometric average form [43] as,

et 8 e | ;—.‘4._.4\.’.4_\#”

3

a; =(aa)"? (4.70)

The repulsive force between molecules i and j, represented in EOS by parameter byj, which
has the characteristic of volume, can be determined by arithmetic average,

bjj = (b +bj)2 (4.71)
Eqs.(4.70) and (4.71) describing the interaction between a pair of different molecules are
more intuitive than rigorous. Other forms, perhaps with equally valid arguments, can also be

considered. For example, considering the distance between the two molecules, instead of
averaging their volumes results in,

13 TERE
b=[bi ;bj J (4.72)

YY



‘S}lﬁ )w)_‘s'efu‘ w17} ):'go _}U 9 RS c‘s.o.z.a:: ‘sﬁwdg.e’ 0 005 ’,‘a_Or olEisle

Chapter 4: Equations of States

It is common to incorporate an additional parameter in Eq.(4.71) to express the attractive
term between pairs of non-similar molecules,

172
ay = (aa)) " (1-ky) @.77)
where k;; is known as the binary interaction parameter.

Using the above description, the random mixing rule of the attractive term becomes,
0.5
a=Y Y xx(a-a) -k, (4.78)
i

The use of binary interaction parameter for the repulsive term, particularly in mixtures with
high concentration of CO2 [44], has also been suggested, but has not gained popularity,

bij = [(bi +bj)/2](1-K’jj) (4.79)

where k’j; are the repulsive BIP.

Correlations to estimate BIP for specific EOS, such as SRK[45] and PR[46], as well as
general ones [47,48, 49] have been suggested. The most commonly used correlation [47] is,

2(\?”3\?”3)”2 ¢
k=01~ vl.-ls .IE (4.80)

& <

where the constants ¥;, and 8, are determined for each EOS using the available binary data,
or adjusted in tuning of EOS for a particular fluid system, as will be described in Section 9.3.
A default value of 8=6 may be used [50].

Example 4.5.

The Soave-Redlich-Kwong, and the Peng-Robinson EOS are the most widely used equations
in the petroleum industry. It is common to express these equations by the following general
form,
p= RT a

v—b (v+3§b)(v+3,b)

Yy
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Chapter 4: Equations of States
where, 81, and, 82, are constants equal to 1 and 0 in SRK, and 1+ N2, and 1-4/2 in PR,
respectively.

Prove that the fugacity of each component in a mixture, using the above EOS and the random
mixing rules is given by,

N
Ing, = %L(Z— D-In(Z-B) - L[[2ijaij)fa—bi fb]ln(z+82B)

(E4.5)
Solution:
The fugacity coefficient is calculated from Eq.(3.31),
In —~1—j° 9P —RT/V|dV-InZ (3.31)
j RT v ani T.V.n; .

where V is the total volume. Hence, the equation of state is written in terms of total volume
by substituting v=V/n, where n is the total number of moles,

N
n=21‘li
i

Y¥
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Chapter 4: Equations of States
p= nRT n’a
V-nb (V+§nb)V+05,nb)

The derivative of pressure at constant total volume, pressure and all mole numbers except n,
is calculated as,

P __RT__ nRT[d@b)/on,]  (n*a)/dm;(n’a)
N Jry,, V-bn (V —nb)* (V +8,nb)(V + 8,nb)

{8,8,[a(nb)? /3m, (nb)? | + (3, +8,)V[d(nb) /3, }(n%a)
[(V +8,nb)(V +8,nb)]"

Applying the random mixing rules to calculate a and b, Eq.(4.78) and Eq.(4.74) respectively,

N N N N
n‘a= 2 z nzxixjaij = Z 2 nin;a;

i=l j=1 i=l j=1

N N
l']b = 2 nxihi = Znibi
i=l i=1

the derivatives of the two parameters are obtained as,

Yo
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[a(nb)fam]”_“i_i =b,

N N
[E}(nza};’ani ]T.v.nj.,- = 2z{njaij = ZnZ;xjaij
i= i=

Substituting the above calculated terms in Eq.(3.31) and integrating it between the two limits
will result in,

nb, a N
Ing, ==InZ(l-nb/V)+ ¢+ 2% na; |[/na-b,/b|x

V+nd,b naVb,
V+511‘Ib RTb(V +5|nb)[\"+52nb)

Substituting

—an? nRT

(V+mb)(v+8,mb)  V—nb

, 1.e., the equation of state, and V= nv = nbZ/B

in the above will result in Eq.(E4.5).

Y7



